Daily Reservoir Runoff Forecasting Method Using Artificial Neural Network Based on Quantum-behaved Particle Swarm Optimization

نویسندگان

  • Chun-tian Cheng
  • Wen-jing Niu
  • Zhong-kai Feng
  • Jian-jian Shen
  • Kwok-wing Chau
چکیده

Accurate daily runoff forecasting is of great significance for the operation control of hydropower station and power grid. Conventional methods including rainfall-runoff models and statistical techniques usually rely on a number of assumptions, leading to some deviation from the exact results. Artificial neural network (ANN) has the advantages of high fault-tolerance, strong nonlinear mapping and learning ability, which provides an effective method for the daily runoff forecasting. However, its training has certain drawbacks such as time-consuming, slow learning speed and easily falling into local optimum, which cannot be ignored in the real world application. In order to overcome the disadvantages of ANN model, the artificial neural network model based on quantum-behaved particle swarm optimization (QPSO), ANN-QPSO for short, is presented for the daily runoff forecasting in this paper, where QPSO was employed to select the synaptic weights and thresholds of ANN, while ANN was used for the prediction. The proposed model can combine the advantages of both QPSO and ANN to enhance the generalization performance of the forecasting model. The methodology is assessed by using the daily runoff data of Hongjiadu reservoir in southeast Guizhou province of China from 2006 to 2014. The results demonstrate that the proposed approach achieves much better forecast OPEN ACCESS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of ICDs' Port Sizes in Smart Wells Using Particle Swarm Optimization (PSO) Algorithm through Neural Network Modeling

Oil production optimization is one of the main targets of reservoir management. Smart well technology gives the ability of real time oil production optimization. Although this technology has many advantages; optimum adjustment or sizing of corresponding valves is still an issue to be solved. In this research, optimum port sizing of inflow control devices (ICDs) which are passive control valves ...

متن کامل

An Integrated Support Vector Machineand Quantum Behaved Particle Swarm Optimization Algorithm for Groundwater Level Forecasting

Groundwater level prediction in a water basin plays a significant role in the management of groundwater resources. Aground water level forecasting system is developed in this study using Support vector Machines (SVM). Further Quantum behaved Particle Swarm Optimization (QPSO) function is employed in this study to determine the SVM parameters. Later, the proposed SVM-QPSO model is used in determ...

متن کامل

OPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS

In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on str...

متن کامل

Optimizing the Prediction Model of Stock Price in Pharmaceutical Companies Using Multiple Objective Particle Swarm Optimization Algorithm (MOPSO)

The purpose of this study is to optimize the stock price forecasting model with meta-innovation method in pharmaceutical companies.In this research, stock portfolio optimization has been done in two separate phases.The first phase is related to forecasting stock futures based on past stock information, which is forecasting the stock price using artificial neural network.The neural network used ...

متن کامل

Evolutionary Techniques Based Combined Artificial Neural Networks for Peak Load Forecasting

This paper presents a new approach using Combined Artificial Neural Network (CANN) module for daily peak load forecasting. Five different computational techniques –Constrained method, Unconstrained method, Evolutionary Programming (EP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) – have been used to identify the CANN module for peak load forecasting. In this paper, a set of ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015